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Abshact. By using the Gor’kov-Nambu microscopic theory, an expression for the free-energy 
functional is obtained for Josephson-coupled layered superconductors with two order parameters 
corresponding to infra- and interlayer Cooper pairs, The existence of two order parameters 
in a system leads to the appearance of new terms in the freeenergy functional known as the 
‘Josephson’ terms and the Lifshitz invariant. Of these, the Josephson term characterize the 
tunnelling of both intra- and interlayer Cooper pairs between neighbouring superconducting 
SheetS. 

The upper critical field, i fd .  is studied for the superconductors under investigation. It 
is found that a magnetic field parallel to the superconducting layers does not destmy the 
superconductivity for temperatures T c T*. where T’ depends on the resonance integral between 
two neighbouring superconducting layers. This effect gives rise to a positive curvature in the 
temperature dependence of HL\. 

1. Introduction 

The anisotropy of the recently synthesized bismuth- and thallium-based superconductors is 
shown to increase with the number of CuOz sheets between Bi-O of TI-0 layers [1-3]. 
In these superconductors the coherence length &b, along the direction perpendicular to the 
CuOz layers is estimated to be comparable with the distance d between superconducting 
planes 141. 

Moreover, experimental investigations of superconducting fluctuations in the copper 
oxide materials exhibit dimensional crossover from three-dimensional (3D) behaviour around 
T, to two-dimensional (ZD) behaviour away from T, [5 ,6 ] .  All these facts confirm that the 
Josephson coupling between the layers is realized [71 in high-T, superconductors with Bi 
and TI. 

Strongly anisotropic superconductors (SC) with Josephson coupling between the layers 
have been studied by many authors [&I21 mainly based on the Lawrence-Doniach (LD) 
freeenergy functional 181. 

Layered superconductors are described by a model that proposes the electronic motion to 
be free and isotropic inside the layers, while the tight-binding approximation is appropriate 
to characterize the interlayer motion. Then the electron specmm will be given as 

E @ ,  ~ z )  = p 2 / ( h )  t td1 - cos(p&)l (1) 

3 Permanent address: Institute of Physics, Azerbaijan Academy of Sciences, 370 143, H Cavid Street 33, Baku, 
Azerbaijan. 
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where ts is the resonance integral for an electron to move between the layers. 
For the case of ts > k T ~ ' ~ ,  where T," is the critical temperature evaluated by the mean- 

field theory, the anisotropic properties of superconductors are described by introducing the 
anisotropic effective mass in Ginzburg-Landau (CL) theory [13,14]. In the opposite case of 
Q < kTJo) < EF, where EF is the Fermi energy of a free electron inside a superconducting 
plane, an electron travels a distance of the order of the correlation length before tunnelling 
to the neighbouring layer. In this case the Josephson-like coupling between the sc layers is 
just realized. Then the differential-difference GL equations are appropriate to describe the 
layered sc [7-121. 

In all the previous works devoted to the Josephson-coupled model of layered sc [7-121, 
an electron pair is assumed to be formed inside each sc layer. Cooper pairs may tunnel 
from one layer to another. A superconductor becomes effectively two-dimensional with the 
weakening of interlayer coupling. The order parameter phase fluctuations should destroy 
off-diagonal long-range order (ODLRO) in a 2D superconductor [15]. However, the existence 
of Berezinshii-Kosterlitz-Tho~less topological defects sets a 'quasi-long-range' order in a 
system [16,17]. An interlayer pairing mechanism (see [18-241 and references therein) is 
suggested to stabilize ODLRO [19]. It has been shown that an additional channel of pairing 
can enhance the superconducting critical temperature. The upper critical magnetic field Hc2 

has also been calculated [21,22] in the case of r~ z kT,". 
This paper deals with the superconducting properties of layered systems with inter- 

and intralayer electron pairing in the case of t~ < kT2) < &F where Josephson coupling 
between SC layers is present. 

The outline of the paper is as follows. In section 2 we obtain the Ginzburg-Landau 
free-energy functional by using the Gor'kov-Nambu formalism [25.261. In section 3, the 
upper critical magnetic field Hc2 is calculated in both directions, parallel and perpendicular 
to the sc layers. The formulae obtained for Hc2 make it possible to understand the positive 
curvature in the temperature dependence of H a .  In section 4 the discussion of the results 
is given. 

E P Nakhmedov and E V Tohirov 

2. Giburg-Landau free-energy functional for layered superconductors with intra- 
and interlayer pairing 

Layered superconductors may be described as regularly arranged conducting planes. There 
exists a finite probability of electron tunnelling between neighbouring layers. Such a layered 
sc is characterized by the following Hamiltonian: 

22 = Ijo + + (2) 

with 
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Here, W$(T)  is the creation operator of the electron with spin U at the point T of the 
jth layer; 2s is the transfer integral between the nearest planes; and A and A, are the 
magnetic vector potentials parallel and perpendicular to the layers, respectively. The 
potential &l(r - r’) in (2c) represents the interaction between two electrons placed at 
points T and T‘ of the layers j and 1. Without specifying the origin of the elechun-electron 
(e-e) attractive interaction we shall represent !+(T - T‘) as: 

yr(T - T’) = [ V d j l +  Vi (Jj.l+l + Jj.t-1 )IS(T - T’) (3) 

and 

v, = -1vj i = 0.1. 

Such interaction is analogous to the phonon-mediated e-e attraction in the Bardeen-Cooper- 
Schrieffer (BCS) theory. Therefore here, as in the BCS theory, only the electrons in the 
vicinity of the Fermi surface are assumed to take part in the pairing process. The existence 
of the interlayer pairing, VI, makes this model a non-point-interaction model. As a result, 
triplet pairing of two electrons on the nearest-neighbouring layers may become possible. 
However, here we shall consider only spin-singlet pairing. To obtain the Ginzburg-Landau 
free-energy functional by using microscopic theory we shall follow Gor’kov’s method 1251. 

The normal G;!(x, x ’ )  and anomalous F$(x, x’)  Green functions are defined as 

G$(x, x ’ )  = - (Tz (Yja(x)YTp(x’))) 

F;?(x, x‘)  = (Tr(Yj&)Wj?p(x’))) (5) 

(4) 

where x = (T ,  c }  denotes both coordinate T and imaginary ‘time’ 5. T, is the chronological 
operator. 

By using the equation of motion for an operator Wj.(x),  given in the Heizenberg 
representation, we may obtain the equations for G$(x. x ’ )  and F$(x, x‘). In the absence of 
a spin-dependent interaction, the spin indices of the normal and anomalous Green functions 
can be omitted, by using the following relations: 

GtP(x ,x ‘ )  = J,gGi j (x ,x ‘ )  (W 

F;@(x,x’) = $*-pFij(x,x’) .  (6b) 

Then the equations for Gij (x ,x’ )  and F i j ( x , x ’ )  are represented by the following 
formulae: 

[ -: + ($ - i G A ( r ,  e j )  

Gj-i,p(x, x ‘ )  + Vofij(O+)F;,(~, x ’ )  
+exp ( - i i  ldu-i)d 1 
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The equation (7) for a free particle (i.e. VO, VI  = 0) without an external magnetic field 
is solved easily in a momentum representation: 

6(O’(p, p Z b )  = I/[iwv - tp - il cos(p,d)l (9) 

where w, = zT(2u + 1 )  is a Matsubara frequency, T being temperature with U = 
0, *I, f 2 ,  . . .; tp = ~ ( I p l - p ~ ) ,  where UF and p~ are Fermi velocity and Fermi momentum, 
respectively. We perform the Fourier transform of (9) as 

To study the weak superconductivity for Josephson-like interlayer coupling under the 
condition t~ e kTJo) e EF, we expand (?(O)(p, p,lw) in (10) over the small parameter 
t l / k T  e 1 in the vicinity of the critical temperature Tc and obtain 

(1 1) (?pj.(p\w) = [(1/2)tlg”(p,  w)~’i- i ’ lg(~)(p,  w )  + 0(((1/2)r,g(~))1j-j’1+*) 

where g(O)@. w )  is the ‘bare’ Green function, which corresponds to ZD motion of an electron 
and is given as 

g(O)@. w )  = l/(iwu - tp). (12) 

The formula (11) shows that the Green function 6 p j , ( p \ w )  falls with increasing distance 
z = dl j - j‘l between layers j and j‘. 

By introducing the order parameters A:(v-; j ,  j )  for the intralayer and A;, (T;  j ,  j f 1) 
for the interlayer as 

we get the following integro-differential equations from (7) and (8): 

Gjj,(T.T’lw) = G ; ! ( T , T ’ ~ ~ ) -  x / d 2 r l  G E ) ( T , T ~ I ~ ) A ~ ( T ’ :  i, i + k ) F & j . ( ~ , ~ ’ J w )  

(14) 

(15 )  

k 4 , i I  i 

F$T, T ’ I w )  = x / d Z r l  G ! ~ ) ( T I ,  T I  - w)At(rI: i ,  i + k)Gi+x,jt(T, ~ ‘ \ w ) .  
k=O,&l i 
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Here G$!(T, ~'10) is the 'bare' Green function in the presence of a magnetic field. 

up to thud order in A;(.; j, j + 1) from the above equations: 

27.49 

In the vicinity of the critical temperature we derive the equations for the order parameters 

According to expression (11) for the 'bare' Green function GPj(v - v'lw), we shall 
keep all terms up to the second order of the interlayer tunnelling integral, t~., in the sum 
over i in (16). Besides, in accordance with the order-parameter synune'q we believe that 

(18) 
After the replacement of A:(T, j) by (I /JZ)A;(T,  j). the following equations for A; 

A?,(T; j .  j - 1) = A:(T; j - 1, j )  E A;(?-, j - 1). 

and AT are obtained: 

-- - (K& + ZK:,)A:(r, j )  - KPl ZA;(r,  j )  - exp 
lV0l 

2 + exp (-if..> A;(.. j - I)] + (K& + 2 K i I )  ($ + i E A )  A;(., j )  

.Zed A;(., j - 1) - exp (]%Az) A;(T,  j + l)] 
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The third-order terms in the order parameters in equations (19) and (20) are denoted by 
1; and 1;. The expressions of 1; and I: are given in appendix 1. The coefficients Kij in 
equations (19) and (20) are defined as follows: 

Kfp, = T /d2q  GY’(r1 - T I  - u)GT)(rl - r[o) 

Kh = i T F / d 2 r l  Gi - 0) (VI - V I  - w)8?)(q - rlm)(rl - r)* 

and 

K& = up(ln(oo/T) + f ( t ~ / 4 k T ) ~ I I  + (2T/w~)~Il  

KP1 = ( v ~ / ~ ~ ) ( ~ L / Z T ) ~ [ ~  - (2T/a)’I 

(214 

( 2 W  

K& = -($/32)(ti/ZkT)*[l+ (2T/%l21 (21d 

K& = &p/[3Z~(kT)*] (21d) 

KiI = - ( ~ ~ / 4 k T ~ ~ & , / [ 6 4 a ( k T ) ’ l  (2 1 4  
where U? = m/(2rk2 )  is the density of the 2D electron states and OD is the Debye 
temperature. We should note that the coefficient K& depends on the filling degree of 
the ZD electron band; K& = 0 corresponds to the half-filled case. This fact was also shown 
by previous authors [21,22]. K:l can be represented in the following form: 

where the parameter pl characterizes the degree of deviation from half-filling and 0 c 1.~1 < 
1. For metals usually pi, << 1 and pll = 0 corresponds to a half-filled 2D electron band. 

By using the gap equations (19) and (20) the Ginzburg-Landau functional with two 
order parameters can be constructed. 
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where AF4 denotes the fourth-order terms in the order parameters in equation (23). The 
expression of AF4 is given in appendix 1. The coefficients (YO(T) and q ( T )  in (23) are 
defined as 

and 

(25) 

Here Td and TCi are the critical temperatures, corresponding to intra- and interlayer pairings. 
These critical temperatures are given by the following expressions: 

TCo = oDexp(-l/vFlVo) and GI = ooexp(-1/$IVlI). (26) 

The third and fifth terms in F(A0,  Ai] characterize the tunnelling of intra- and interlayer 
pairs between nearest-neighbouring planes and tunnelling strength 

El = t : / 32E~.  (27) 

It must be stressed that the tunnelling energies of intra- and interlayer pairs are different 
(see equation (23)). Introducing the transverse components of the mass tensor for intra- 
and interlayer pairs as MO = f i2 /2Eld2  and M1 = h2/ELd2, respectively, they are seen to 
differ by a factor of l/2. 

By setting AI(?-. j )  to zero in equation (U), we get the Lawrence-Doniach free-energy 
fmctional 181 for the Josephson-coupled qUasi-ZD SC. The coefficient Eol is represented as 

In the continuum limit, where j is replaced by z, the linear derivative of the order 
parameters with respect to z can be obtained as 

(AiaAi/az - AoaA;/az + HC) 

instead of the seventh term in F[Ao. At]. As is known, the linear derivative of the order 
parameter in an expression for the free-energy functional is called the Lifshitz invariant 

3. The upper critical magnetic field 

Following Gor'kov's equations (19) and (20) it is possible to find the upper critical magnetic 
field, Hc2, in the vicinity of the transition temperature. We shall study both components of 
Hc2, parallel and perpendicular to the layers, separately. 
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The choice of the vector potential A as A = IO, x H ,  0) corresponds to the perpendicular 
component of the magnetic field H .  Excluding the coordinate y and the discrete layer 
number j ,  the equations (19) and (20) can be reduced to 

1 - @ ~ / 4 m ) [ a ~ / a ~ ~  - ( x / ~ , ) ~ I  + u ~ ( T ) } A ; ; ( x )  - ~ E ~ ~ A ; ( x )  = o (29) 

and 

1 - ( h ~ / 4 m ) 1 a ~ / a x ~  - (X/ZJ~I  + aI (T)}A;(~)  - 4EolA;(X) = o (30) 

where I,’ = hc/ZeH is the cooperon magnetic length. 

turn out to be identical. Therefore we can suppose that 
By elimination we can get equations for A:(x) and AY(x) from (29) and (30), which 

A;(x) = CA;(x)  

where C is a constant. 
The coefficient C is obtained by joint solution of the oscillator equations (29) and (30) 

as 

f:(4m/h2)[-ao(T) + C4Eoll = 2n + 1 

&4m/h2)[-a1(T) + ( l / C ) 4 E o 1 ]  = 2n + 1. 

H.$ satisfies this system of equations for n = 0. As a result 

HA = (cm/eh){-[cuo(T) + w ( T ) ]  t [(a0 - + ( S E O ~ ) ~ I ’ / ~ } .  (31) 

The right-hand side of equation (31) vanishes at temperatures T; t TaTci .  This is a 
‘true’ critical temperature estimated by mean-field approximation for the system under 
consideration. As shown by many authors [18-221, the existence of two order parameters 
in the system leads to an increase of the critical temperature. 

For parallel magnetic field, we choose H = {O, H ,  01 and A = {O,O, - x H } .  Then, 
Gor’kov’s equations (19) and (20) are reduced to the following form: 

[-(h2/4m)az/axz - ~ E I  cos(Xd/Z:) + Cy0 + 4 E l ] A ; ( x )  - 4Eoi cos(xd/2I~)A;(x)  = 0 
(32) 

(33) 

The equations (32) and (33) are similar to Hill’s equation (28). They are solved for some 
asymptotic cases. 

In a weak magnetic field satisfying the condition H 2  c (16mc2/e2d2)max(El,  Eo,], 
the following expression for HJ2 is obtained (see appendix 2): 

[-(h2/4m)az/a~z - 2E~coS(xd/l;) +Cy1 + 2 E l ] A ; ( x )  - 4E01 c o s ( x d / Z ~ ) A ~ ( x )  = 0. 
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where a and b are positive constants, 

2 1/2 1/2 

2 I f2  I12 b = 2 - [ I +  (Eoi/Ei) I } . 
c l  = $3 + [ I  + (EOIIEL) 1 I 

As shown in appendix 2, the ratio E o I / E ~  varies in such a range where b always takes 
positive values. Eo1 characterizes the coupling energy (see (A2.8) and (A2.9)) between 
the two oscillators. The values of Eo1 should not be too large to destroy the cooperons' 
oscillations. 

The system of equations (32) and (33) may be solved approximately for a magnetic field 
satisfying the condition (16mc2/e2d2)Eol c H 2  < (16mc2/e2d2)E~ with the assumption 
that Eo1 < E l  (see appendix 2). In this interval we obtain 

For Td > T,l the experimentally observed Hc2 will be defined by (35). 
For higher ma netic field values such as H 2  (16mc2/e2d2)max[E~, Eol] the linear 

dependence of Hc2 I f  on T is no longer possible. For these values of H, the temperature 

dependence of Hi\ takes the form 

and 

The larger of these two expressions would be the actually observed H:L. 
The expression (37) (or (38)) indicates that H A  becomes infinite at the temperature 

T = T* satisfying the equation -@(T*) = 4 E i  (or -cq(T*) = ~ E I ) .  That is, the 
orbital &pairing effect of a magnetic field parallel to the layers does not destroy the 
superconductivity. In this case the cores of the vortices fit between the sc layers and 
the external magnetic field has no effects on the superconductivity. The divergence of HL 
at T* is removed when the paramagnetic effect of Chandrasekhar and Clogston [29,301 or 
spin-xbit scattering [lo] is taken into account. It is worth noting that this effect also takes 
place in the theory of a layered sc with Josephson-like interlayer coupling, provided that 
electron pairing occurs only inside each layer [7,9,101. 

4. Conclusion 

The Ginzberg-Landau free-energy functional for layered superconductors with two order 
parameters was obtained for ri c kTJo) by applying the Gor'kov-Nambu theory. This 
functional contains several new terms such as Lifshitz's invariant and terms corresponding 
to the Josephson tunnelling of both intra- and interlayer pairs, in addition to the terms present 
in an isotropic sc functional. The existence of these terms in the free-energy functional 
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drastically changes the magnetic properties of the system. For the parallel component of 
the magnetic field at T = T' < Tc, the normal cores of the vortices fit between the layers, 
allowing them to remain superconducting. This effect takes place also in a Josephson- 
coupled layered SC with only indaye r  pairing 19. IO]. Such behaviour of H; makes the 
understanding of positive curvature in the temperature dependence of Hcz possible [4,31]. 

The free-energy functional (23) obtained for layered superconductors with two order 
parameters allows the study of the spectrum of collective excitations and the effects of the 
order-parameter phase fluctuations. 

Using the Hamiltonian formalism with Coulomb effects, the system of non-linear 
coupled equations for phases &(T. j; t )  and 41(r. j; t )  may be obtained as 

E P Nakhmedov and E V Tahirov 

j ;  t )  + a2Mr. i; 0 )  
ay2 

N d T )  
n2co 

(NsoNzt) 
2% 

- ~ - E . L ~ W O ( ~ ~  i) - @00(r. i + 111 + sin[hO(r, j )  - h ( r ,  j - 1)Il 

- 4  EOI (sin[@o(r. i) - @t@, j - U1 +sin[h(r, j )  - h ( p ,  j ) l  t 
(39) 

E~IsinI$t(r. j )  - h ( r r  j + 01 + sin[h(r, jl - h ( r ,  j - 011 

EolIsin[h(r, j )  - $JO(~ ,  j + 111 + sinIqh(r. j )  - h(r ,  i) l l  @"&"I) - 4- 
h2CI 

Ns1(T) -- 
@CI 

(40) 
where ~ I I  is the coherence length inside the sC layers, N,o(T) = 21A0l2 and CO ( N S I ( T )  = 
21A1 I' and Ct) are the density of superconducting electrons and the capacitance matrix for 
an intralayer (interlayer) pair. 

For half-filling inside the SC layers, the equations (39) and (40) are reduced to 2N s i n s  
Gordon-like coupled equations, N being the number of layers. The static distribution of the 
phases $0 and @I for t l  + 0 (in this case both the coefficients E l  and Eo1 vanish) will 
be described by two Laplace's equations for each layer, j. In other words, the sc layers 
are uncoupled in t l  + 0, and a superconducting state should be described by the two 
kinds of KosterlibThouless topological defects [16,17]. Indeed, for t l  -+ 0, the miwing 
of the order parameters does not occur in the functional (23) and the free-energy functional 
becomes effectively two-dimensional. Therefore, the order-parameter phase fluctuations 
should strongly affect the superconducting properties of the system. 

In addition to the interlayer electron-electron attractive interaction (2c) given in the 
particlehole channel in the Hamiltonian (2). there is another term corresponding to an 
interlayer interaction in the particleparticle channel. The influence of both these terms on 
ODLRO is under investigation. The behaviour of the correlation function and some features 
of ODLRO for a layered SC with two order parameters will be the subject of a future work. 
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Appendix 1 

The common expression of I: (I = 0.1) is given by the last term in (16). Summing over k, 
kl and kZ in (16) and using the symmetry condition of (18), we retain such terms in sums 
over i, il and iz in which all order parameters depend only on the j th  layer number. After 
the replacement of Ay(r, j )  by (1/,/2)A;(r, j )  in (16) the following expressions for I: 
and I: are obtained. 

I: = Ao(lAol’+lA~ IZ)Ai+2&Ai IAo12A;+f iA~IAi  lzAy+&Ai(A~)’Ai +Az(A;)’Ao 
(Al.1) 

I: = Ao(flA:l+ lAil)A; +2&A1 /Ai  [’A: t &Ai IA;lZAo+fiAi ( A ~ ) ’ A o f A z ( A ~ ) ’ A i  
(A1.2) 

where 

A0 = - T c / / / d ’ r l  d2r2dZr3G; j (~~,~I  -w)G~~(TI~TzIo)G~~(P~,PzI -CO) 
w 

+‘“-.(&)I &F (A1.4) 

PI = -- 1 cosh-’ (&(l -fill)) -cosh-’(&) 

Bz = ( 1 / 1 6 ~ ~ ~ ) ( t ~ / E ~ ) ’ .  (A1.9) 
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Appendix 2 

The system of equations (32) and (33) are analogous to Hill's equation. For E,,, = 0 they 
take the form of two uncoupled Mathieu equations [281. This system of equations may be 
solved for some asymptotic cases. After the following replacements 

E P Nakhmedov and E V Tahirov 

(d/21:)x = t and A:(Z@/d) = f i( t)  (i = 0, 1) (A2.1) 

equations (32) and (33) can be written in the following form: 

[ho + rl cos(zt) + a2/at2ifo(r) + e cos(t)fi ( t )  = o W.2) 

(A2.3) [il + $~cos&t) + a2/atzlfi(r) + ecos(t)fo(r) = o 
where 

W . 4 )  

W . 5 )  

(A2.6) 

(A2.7) 

The case q > 1 and 8 > 1 corresponds to a weak magnetic field, i.e. (2eH/hc)2  c 
(64m/&k2)min{El, Eel). 

Let the variable t of equations (A2.2) and (A2.3) be replaced by z as t = z/(Z17)'/.', 
then f ; [ ~ / ( 2 v ) " ~ ]  s f-;(z)  ( i  = 0, 1). After expansion of cosines in ( A l l )  and (A1.3) we 
keep all terms up to second power of z .  Then we obtain two coupled oscillator equations: 

The solutions of equations (A2.8) and (A2.9) are assumed to be chosen as a linear 
combination of oscillator wavefunctions with lowest energies: 

(A2.10) 

(A2.11) 

Substitutions of (A2.10) and (A2.11) into (A2.8) and (A2.9) result in the following 
expressions for the coefficients Q and b: 

(A2. 12) 

(A2.13) 
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Also the following relationships between the coefficients A ,  E and C ,  D are obtained 

c = ( m ( u  + ( @ / q ) z ~ l p  - 11.4 

D = -(q/e){ri + ( 0 / ~ ) ~ 1 ' ~ ~  + 1 ) ~  

(A2.14) 

(A2.15) 

Since e /q  = EoI/EI, EO' and EL are expected to vary in such an interval, ensuring always 
b 2 0. This means that the coupling energy (- EO') of two oscillators in (A2.8) and (A2.9) 
cannot he too large to destroy the oscillation of 'cooperons'. Then, HLL can be found as 
a solution of the determinant constructed by the coefficients of the system of equations 
obtained by the substitution of (A2.10) and (A2.11) in (A2.8) and (A2.9). As a result the 
expression (34) for HA is obtained. 

For q > 1 and 0 < 1. the magnetic field is in an interval, given as 

(16m/hZdZ)Eol < (eHFc)' c (16m/h2dZ)E~. 

The last terms in equations (A2.2) and (A2.3). which are proportional to 8, are taken as a 
small parameter. Then the expansions of hft) and hi (i = 0, 1) in Q are 

f i ( t )  = f i ( O ) ( t )  + efi(')(t) + e2f j2 ) ( t )  + . . . 
hi(t) = hi (0) (t) + eh?)(t) + s2hy)(t) + . . . . 

(A2.16) 

(A2.17) 

Here, 

fdO'(t) = e x p [ - ~ ( ~ q ) ' / ~ t ~ ]  and f?)(t)  = e x p ( - ; q V )  

are the eigenfunctions of a linear oscillators in the lowest energetic state with the eigenvalues 
A!) and A$. After some routine calculations we get the following expressions for 2.0 and 

(A2.18) 

(A2.19) 

From (A2.18) and (A2.19) we may derive the resulting relation for I?;;: 

(HA)(') = ( c m / e h ) ~ 2 / 2 m d 2 E , ) " 2 [ - ~ ~ ( T )  + 4 ~ 0 1 1  

(HLL)") = ( cm/eh) (h2 /md2EI)"Zt -~ l (T)  + 4Eoll. 

(A2.20) 

('42.21) 

For Tcl z Tc2 the first solution, (A2.20), must be chosen. For a strong magnetic field, i.e. 

(2eHlhc)' > (64m/dzfz2)max(EI, Eo'] 

the parameters 6 and q in equations (A2.2) and (A2.3) turn out to be less than unity, i.e. 
6 c 1 and q < 1. In this case 50)  and hi in (A2.2) and (13) are expanded in both q and 
e: 

h(t) = fi(OO)(r) + qfi(O')(t) + efi(I0)(t) + qefi(")(t) + . . . (A2.22) 

hi(t) = n? + q$(t) + 8hY0)(t) + qr9hj")(t) + , . . . (A2.23) 
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Substituting (A2.22) and (A2.23) into equations (A2.2) and (A2.3) we may obtain each 
term of these expansions. Since the upper critical magnetic field corresponds to the lowest 
quantum numbers, we choose no = nl = 0 and get the following results: 

(A2.24) 

E P Nakhmedov and E V Tahirov 

ho=--I s q  2 -  ' 82  2 

Taking into account the equations (A2.4HA2.7) the expressions for HA are obtained 
from (A2.24) and (A2.25): 

and 

(A2.26) 

(A2.27) 

For Tcl > Td, HA will be defined by the equation (A2.26). 
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